軸流泵多工況優化設計及效果分析
石麗建1湯方平1劉超1謝榮盛1謝傳流1孫丹丹2
1 揚州大學水利與能源動力工程學院 江蘇 揚州 225100;
2 徐州市水利建筑設計研究院 江蘇 徐州 221000
摘要:為了提高軸流泵非設計工況的運行效率,拓寬軸流泵高效區范圍,對軸流泵進行多工況優化設計。結合軸流泵段的模型試驗,采用數值模擬手段和數值優化技術,改變葉輪的幾何設計參數。對軸流泵葉片進行參數化建模,再對軸流泵葉輪結果進行泵段數值模擬。最后以軸流泵段3個流量工況點的加權平均效率最高,揚程為約束條件,改變軸流泵葉輪的設計參數,對軸流泵段進行多工況優化設計。研究結果表明:優化后軸流泵段效率曲線較初始泵段明顯變寬,其中小流量工況點效率提高約2.6%,設計工況點效率提高約0.5%,大流量工況點效率提高最多,約7.4%,而對于揚程變化范圍較小,各工況點揚程均能滿足運行要求,大大降低了運行成本,縮短了優化設計的周期。同時采用CFD計算的學科分析方式,結合試驗研究的手段取代人工憑經驗的優化方式,證實了軸流泵段多工況優化設計的可靠性、高效性。該研究將為泵站的高效運行和軸流泵的多工況優化設計提供參考。
關鍵詞:泵;優化;計算機仿真;軸流泵段;多工況;試驗分析
Optimization design and effect analysis of multi-operation conditions
Of axial-flow pump device
Shi Lijian1, Tang Fangping1 , Liu Chao1, Xie Rongsheng1, Xie Chuanliu1, Sun Dandan2
1. School of Hydraulic Energy and Power Engineering, Yangzhou University, Yangzhou 225100, China;2. Institute of Water Conservancy Works Design of Xuzhou, Xuzhou 221000, China
Abstract: The flow units of pump device will produce a bad flow regime when the axial-flow pump runs under off-designcondition. The paper uses the numerical simulation and numerical optimization techniques, changes the geometric designparameters of axial-flow impeller, and carries out the optimization design of multi-operation conditions of axial-flow pumpdevice. The optimization design based on pump device experiment analysis aims to improve the efficiency of operation underoff-design conditions, broaden the scope of the efficiency of pump device, and reduce the operating cost of pump station.Firstly, this paper performs the parametric modeling of axial-flow impeller, and uses fewer design parameters to control theshape of pump blades by FORTRAN. According to the design condition to design an axial-flow impeller with high efficiency,and design the guide vane based on the design condition and the impeller. Use the impeller, the guide vane, and the standardinlet and outlet pipe to calculate the hydraulic performance of axial-flow pump device. Then do the experiment of the pumpdevice to verify the accuracy and reliability of the numerical simulation of the pump device. Lastly, this paper carries out theoptimization design of multi-operation conditions of axial-flow pump device. The design flow is 360 L/s, the small flow is 300 L/s and the large flow is 420 L/s, and the 3 flow conditions is chosen as the multi-operation conditions. Change the designparameters of axial-flow impeller, select the weighted average efficiency of pump device as the optimization object and the head of each condition as the constraint, and carry out the optimization design of multi-operation conditions of axial-flow pump device. For each design parameter, every change corresponds to a complete numerical simulation of pump device. Lastbut not least, this article does the internal flow field analysis of pump before and after optimization. The analysis mainlyincludes the streamline comparison of the different flow conditions for the outlet pipe, and the pressure comparison of thedifferent flow conditions in the outlet of the impeller; besides, the NPSH(net positive suction head) is compared before and after optimization. The optimization results show that the optimized high efficiency range of axial-flow pump device iswidened obviously compared to the initial pump device. The efficiency of small flow condition is increased by about 2.6%, theefficiency of design flow condition is increased by about 0.5%, and the efficiency of large flow condition is increased by about7.4%, which is the most. As to the head of the axial-flow pump device, it is little changed, and can also meet the operationrequirement. The optimized pump device can greatly reduce the operation cost of pump station, and the optimization designmethod of multi-operation conditions of axial-flow pump device can greatly shorten the design cycle. From the comparison ofstreamline and pressure before and after optimization, it can be seen that the optimized streamline is smoother and the pressuredistribution is more reasonable. And the NPSH is similar, and does not become worse. This paper adopts the computationalfluid dynamics (CFD) simulation as the subject analysis method, which is combined with experimental study and replacesartificial way of optimization design based on experience, and proves the reliability and efficiency of the optimization design of multi-operation conditions of axial-flow pump device.
Keywords:pumps;optimization;computer simulation;axial-flow pump device;multi-operation conditions;experimentanalysis
0 引言
軸流泵葉輪葉片設計質量高低很大程度上決定著水泵的性能。目前軸流泵葉片設計通常采用升力法、圓弧法和奇點分布法等。隨著計算機技術的快速發展,基于CFD的優化設計方法得到快速發展,根據軸流泵的數值計算結果,調整軸流泵葉片的幾何參數,使得泵內流態較好,以避免漩渦、回流和二次流等不穩定的流動出現`1-2`。目前,國內外對軸流泵葉輪優化設計基本都是對軸流泵設計工況性能進行單目標或多目標優化設計,并沒有進行多工況的水力性能優化設計`3-9`。江蘇大學`10-11`對離心泵的多工況優化設計進行了研究,研究出了具有良好的外特性、速度場、壓力場等分布更為合理的葉輪。另外,國內其他一些學者在風力機葉片、汽輪機和水輪機葉片上也進行了多工況優化設計研究`12-14`。然而,根據工程實際可以發現,大型泵站工程軸流泵運行揚程是根據一年四季站下站上水位要求確定的,并不是一直處于設計工況條件下運行,相反大部分時間處于非設計工況運行,運行費用大大增加。在設計軸流泵時,不僅應考慮設計工況下的高效率,同時也應滿足在非設計工況下使用時的可靠性。故對軸流泵葉片進行多工況優化設計,提高非設計工況的運行效率,拓寬高效區范圍,降低運行成本顯得尤為重要。
設計工況時液體通過軸流泵段各通流部件的流動,可以認為處于最佳狀況,近似于理想流動。但是偏離設計工況時,由于真實液體的黏滯性,在泵內將產生漩渦、回流、失速和脫流等,而且這些不良流態會逐漸增大。改變軸流泵葉輪幾何設計參數,減小非設計工況泵段內的不良流動,提高非設計工況的效率,同時使得設計工況點的效率保持較高是本文的主要研究內容。本文結合某軸流泵段的模型試驗,采用數值模擬手段和數值優化技術,適當的選取葉輪的幾何參數,對軸流泵模型進行多工況優化設計,提高多個工況點泵段的效率,拓寬軸流泵高效區范圍,為軸流泵多工況優化設計提供參考。
1 軸流泵葉輪的參數化建模
一般在葉輪設計時,將葉片沿徑向均分成11個翼型斷面。本文通過FORTRAN編寫的程序,輸入軸流式葉輪基本設計參數,生成11個斷面的三維翼型坐標值。將坐標值文件導入Turbo-Grid中,對軸流泵進行建模并劃分網格。對葉輪性能影響比較大的主要有葉片數、輪轂比、葉柵稠密度和翼型安放角。本文保證葉片數、翼型、拱度等設計參數相同,通過改變各斷面葉柵稠密度和翼型安放角,進而改變軸流泵葉片形狀,研究小流量工況、設計工況和大流量工況3種工況下泵段的水力性能,從而達到拓寬高效區范圍,降低運行成本的目的。
1.1 葉柵稠密度
葉柵稠密度是軸流泵葉輪設計重要的幾何參數`15-18`,它直接影響泵的效率,也是決定水泵汽蝕性能的重要參數。葉柵稠密度是根據在葉柵中能量損失最小以及具有較好汽蝕性能的條件確定。葉柵稠密度減小,水泵葉片總面積減小,葉片工作面和背面的壓差增加,汽蝕性能變差。但是葉片總面積減小,相應的減小了水力摩擦損失,葉片效率可以提高。
在軸流泵葉輪設計時,通常有11個翼型斷面就需要葉片沿展向11個斷面的葉柵稠密度數據,而這11個斷面的葉柵稠密度數據采用從輪轂到輪緣近似的葉片等強度分布規律。因此,只需要確定葉尖葉柵稠密度和葉根葉柵稠密度倍數。通過FORTRAN編程,根據葉尖葉柵稠密度和葉根葉柵稠密度倍數生成11個斷面的葉柵稠密度。將11個設計變量減少為2個,提高葉片優化設計的效率。即通過改變葉尖葉柵稠密度a1和葉根葉柵稠密度倍數a2實現軸流泵葉片幾何形狀的改變。
1.2 翼型安放角
葉片的翼型安放角對軸流泵水力性能同樣具有重要影響。軸流泵葉片外緣翼型很薄,近乎平直,葉片沖角很小,做功能力不強。而輪轂側翼型較厚,拱度大,且沖角大,導致葉片扭曲嚴重。因此,在優化設計時應適當減小輪轂處翼型安放角,降低輪轂側的軸面速度與圓周分速度,同時適當增大外緣翼型安放角,增大外緣葉片沖角,提高葉片做功能力。這樣不僅可以減小葉片扭曲,改善翼型工作條件,而且可以提高效率、擴大高效區范圍。
初始設計葉輪采用基于CFD數值計算的設計方法。利用數值計算軟件CFX針對設計工況軸流泵葉輪內部流場進行全三維的紊流數值模擬。對計算結果進行分析比較,兼顧效率和汽蝕性能要求,得到最終的初始設計方案。通過對這11個斷面翼型安放角數據的分析發現,用二次多項式對這11個翼型安放角進行擬合,得到的標準差為0.999,誤差較小,得到翼型安放角與沿葉片展向各斷面相對半徑關系曲線如下:
βm=90.504-129.964r+57.26r2。 (1)
式中βm為翼型安放角,(°);r為各斷面相對半徑值。
對于每一種輪轂比,采用的翼型均為NACA16翼型,各翼型相對半徑值是確定的,可以通過FORTRAN編寫程序改變二次多項式的3個系數值,進而改變各斷面翼型安放角的值。將二次多項式3個系數a3(a3=90.504)、a4(a4=129.964)和a5(a5=57.26)作為優化的設計變量。
在進行優化設計時,只需改變以上5個變量的值即可改變軸流泵葉片的扭曲形狀,進而改變軸流泵段的水力性能,提高優化的效率,縮短設計的周期。
2 泵段的數值模擬
本文對整個泵段計算域進行定常數值模擬。采用有限體積法對N-S控制方程在空間域上進行離散。求解精度設置為高階求解格式。最大迭代步數設為1000步,迭代收斂精度設為10-5。
2.1 計算模型的建立
軸流泵段包括:帶導水錐的進水直管段,軸流泵葉輪、導葉體和標準60°出水彎管段。其中為了建模及網格劃分的方便,導水錐與直管段一體,導水錐設置成靜止壁面對輪轂區流態基本無影響。本文軸流泵葉輪名義比轉速ns=800,其設計流量Q0=360L/s,設計揚程H=6.0m,轉速n=1450r/min,葉頂單邊間隙為0.2mm。后置導葉體為針對該葉輪的設計工況而針對設計的,導葉體的擴散角為6°,導葉葉片數7片,葉輪葉片數4片。進水直管段和出水彎管段采用Proe建模,葉輪和導葉體根據其三維坐標數據點,采用Turbo-Grid建模。軸流泵段三維數值計算模型如圖1所示。
圖1 泵段數值計算模型
Fig.1 Pump device numerical calculation model
2.2 網格劃分
本文對進水直管和出水彎管采用ICEM軟件進行結構網格劃分,網格質量在0.4以上,質量較好,符合計算要求。軸流泵葉輪和導葉在Turbo-Grid中建模并進行結構網格劃分,經檢驗,葉輪和導葉體網格質量較好,同時滿足正交性要求。本文在網格無關性分析時,不斷改變網格數量并對泵段進行外特性計算,發現當網格增加到一定數量時,泵段效率值趨于穩定不再隨著網格數量的增加而增加。在滿足網格無關性要求時,取泵段葉輪網格數330 928,導葉網格數在365 274,整個計算域網格數為1215 277。葉頂間隙網格邊界層7層,滿足計算要求。葉輪和導葉網格如圖2所示。
圖2 葉輪和導葉網格圖
Fig.2 Impeller and guide vane grid chart
2.3 邊界條件
軸流泵計算域進口為進水管的進口,進口邊界條件為總壓進口條件,總壓設置為一個標準大氣壓。軸流泵計算域出口為出水彎管的出口,出口邊界為質量流量出口,葉輪為旋轉域,其中葉輪輪緣壁面邊界設置為相對于葉輪反向同速旋轉,其余計算域均為靜止域。葉輪轉速1450 r/min。其余固體壁面邊界條件均采用固壁表面滿足黏性流體的無滑移條件,近壁區域采用標準壁面邊界條件。導水錐出口與葉輪進口、葉輪出口與導葉進口的動靜交界面采用速度平均的Stage模型,靜交界面采用None交界面類型。
3 試驗驗證
針對該軸流泵設計方案,采用標準k-ε模型,選取了8個工況點進行了軸流泵段的數值計算。根據參考文獻`3`計算處理,該軸流泵段在流量360L/s時,效率最高,符合設計要求。
將葉輪、導葉及進出水管道加工出來在高精密試驗大廳進行泵段外特性試驗驗證。試驗條件包括進出水管道長度、測壓管位置等與數值模擬時嚴格一致,以保證試驗結果的可比性,試驗泵段及葉輪如圖3所示。具體的試驗步驟及試驗方法見參考文獻`19`。
圖3 泵段模型試驗圖
Fig.3 Pump model test
將軸流泵段預測的能量性能曲線與物理模型試驗結果進行對比,如圖4所示。
圖4 試驗結果與數模結果對比圖
Fig.4 Comparasion of simulation results and experiment results
由圖4可知,數值模擬的預測性能曲線與試驗曲線的變化趨勢一致,曲線吻合度較好,各點誤差均在3%以內,表明軸流泵段數值計算的準確性和可靠性。
4 軸流泵段的多工況優化設計
通過CFX數值分析軟件及Isight`20-24`數值優化軟件對軸流泵段進行多工況優化設計。根據紐曼提出的葉片泵Q-H性能曲線分區原則`1`,本文工況選擇分別選為設計工況Q0=36L/s,小流量工況Q1=300L/s和大流量工況Q2=420L/s。設計工況效率最高也是工程應用中最為重要的運行工況,而小流量工況和大流量工況分別選擇約為設計工況的0.8倍和1.2倍。
4.1 優化模型的建立
優化的目的是在軸流泵葉輪設計變量的優化范圍內,在約束條件下,尋找設計參數的最優值,使得軸流泵段3個工況點的效率最優。本文根據上述計算結果對軸流泵段多工況優化問題定義為:3個流量工況下,揚程小范圍的變化,不斷的改變設計變量的值,使得3個流量工況點的效率都達到最優值,以拓寬軸流泵段的高效區范圍。本文以上述軸流泵段為初始方案,對應的葉輪的初始設計變量為:a1=0.9885,a2=1.2897,a3=90.504,a4=?129.96,a5=57.26,優化模型如下。
目標函數
max η(x)=w1η1(x)+W0η0(x)+W2η2(x)。 (2)
設計變量范圍 (3)
0.85≤a1≤1.15
1.05≤a2≤1.45
88.504≤a3≤92.504
-133.96≤a4≤-125.96
49.26≤a5≤65.26
約束條件 (4)
7.4≤H1≤8.0
6.0≤H0≤6.2
2.6≤H2≤3.2
設計變量x=`al,a2,a3,a4,a5`T。
式中η1、η0和η2分別是小流量工況、設計工況和大流量工況的效率;W1、W0和W2分別為對應的權重值;a1、a2、a3、a4和a5分別為葉輪的初始設計變量;H1、H0和H2分別為各工況點的揚程,m。目標函數采用歸一化方法的加權平均法,將多目標優化問題轉化為單目標優化問題。權重值根據工程經驗及運行要求確定`10`。本文為了研究方便,取W1=0.3、W0=0.4和W2=0.3。為了保證優化設計之后軸流泵葉輪的設計點不變,比轉速保持一致,故設計工況點揚程變化范圍盡可能小,其他2個工況點揚程變化范圍可稍大。設計變量范圍選擇參照文獻`25`。
4.2優化算法的選取
針對有約束的、非線性、多目標并且解不唯一的軸流泵段多工況水力性能優化設計問題,文章選用梯度優化算法的序列二次規劃法(sequential quadratic programming,SQP)。該方法能夠直接處理等式和不等式約束,是目前公認的優秀的非線性問題求解算法之一。具有很好的全局收斂和局部超線性收斂特性,迭代次數少,收斂速度快,具有很強的邊界收索能力,對于本文設計變量少,約束條件不多的優化設計問題尤其適用。本文序列二次規劃法的目標函數迭代最大步數設為400步,收斂精度為1.0×10-6。
4.3優化流程
Isight是一款基于參數的多學科設計優化軟件,可以集成仿真優化軟件,實現一套完整的自動優化設計計算框架。本文根據軸流泵段葉輪優化設計的思路,采用數值模擬軟件CFX進行泵段水力性能外特性分析。根據設計參數,通過fortran語言編寫的程序生成葉輪葉片三維坐標值,然后根據葉片坐標在Turbo-grid中進行葉輪建模并劃分網格,每一組設計變量將產生一個新的軸流泵葉輪網格文件,導葉網格和進出管網格分別通過Turbo-grid和ICEM劃分,然后將各部分網格導入CFX中進行前處理并對泵段3個工況點進行數值計算。每一次迭代過程都是上述一套完整的計算處理流程,其中迭代過程中導葉以及進出口網格保持不變。
4.4優化結果分析
不斷改變軸流泵葉輪的設計變量,在揚程約束范圍內,使得軸流泵段3個工況點的總效率最高。在工作站經過一個月左右時間的不斷迭代計算,得到了泵段葉輪的最終設計方案。優化過程設計變量變化范圍小,軸流泵葉輪模型形狀變化不大,保證了本文自動優化的可執行性。每一次迭代優化都采用數值模擬分析的學科分析方式,保證了優化結果的精度。根據最終設計變量值對軸流泵段三個工況點進行了最終方案數值模擬計算,計算結果與該方案優化結果保持一致,說明了優化結果是可靠的,優化效果是可信的、準確的。優化結果與初始結果對比如表1所示。
表1 泵段數值優化結果
Table1 Pump device numerical optimization results
參數 Items |
優化前 Beforeoptimization |
優化后 AfterOptimization |
葉尖葉柵稠密度值 Tip cascade dense degree a1 |
0.9885 |
0.85 |
葉根葉柵稠密度倍數 Multiple of root cascade dense degree a2 |
1.2897 |
1.4468 |
翼型安放角擬合系數(常數項) Quadratic polynomial coefficient of airfoil angle(Constant term) a3 |
90.504 |
90.601 |
翼型安放角擬合系數(一次項系數) Quadratic polynomial coefficient of airfoil angle (Monomial coefficient) a4 |
-129.96 |
-129.84 |
翼型安放角擬合系數(二次項系數) Quadratic polynomial coefficient of airfoil angle (Quadratic coefficient) a5 |
57.26 |
57.278 |
小流量工況揚程 Head of small flow conditionH1/m |
7.735 |
7.6457 |
設計工況揚程 Head of design flow condition H0/m |
6.142 |
6.0274 |
大流量工況揚程 Head of large flow condition H2/m |
2.82 |
3.1996 |
小流量工況效率 Efficiency of small flow conditionη1 |
0.7515 |
0.77685 |
設計工況效率 Efficiency of design flow conditionη0 |
0.84467 |
0.8495 |
大流量工況效率 Efficiency of large flow conditionη2 |
0.6376 |
0.7102 |
根據表1結果可知,葉尖葉柵稠密度減小,外緣翼型長度減小,葉根葉柵稠密度增加,減小了內外翼型的長度差,均衡葉片出口揚程,減小了徑向流動,提高了葉輪的水力性能;同時根據翼型安放角擬合系數的變化可以發現,輪緣側翼型安放角增大,輪轂側翼型安放角有所減小,減小了葉輪葉片形狀的扭曲,改善了翼型的工作條件,這與軸流泵葉輪優化設計的思路一致。優化結果表明,設計工況點效率有所提高,但增加幅度不明顯,大流量工況點效率和小流量工況效率提高較為明顯,其中大流量工況點效率提高了7.4%,小流量工況點效率提高了2.6%,優化效果明顯,設計工況點效率提高約0.5%。將優化后各工況點泵段水力性能計算值與優化前計算值、試驗值進行對比分析,如圖5所示
圖5 優化前后泵段性能曲線
Fig.5 Pump device curves before and after optimization
根據圖5優化前后泵段性能曲線圖可知,優化后軸流泵段小流量工況和設計工況揚程稍有降低,但是效率有所提高;大流量工況揚程有所升高,效率也有所提高。優化后效率曲線較試驗曲線整體抬高,高效區范圍變寬,提高了泵站運行穩定性,降低了泵站運行成本,泵段優化效果十分明顯。
將優化前后導葉和出水彎管流線圖做對比,如圖6所示。優化前后葉輪出口壓力云圖對比如圖7所示。
圖6 各工況流線對比圖
Fig.6 Streamline comparison of different flow condition
圖7 各工況葉輪出口壓力對比圖
Fig.7 Pressure comparison of different flow conditions
由圖6可知,優化后流線較優化前更為平順,特別是小流量工況在優化前導葉內流線紊亂,導葉背面出現脫流現象,優化后流線較好,無明顯脫流。如圖7可知,優化前從輪轂到輪緣壓差較大,在小流量輪轂處和大流量輪緣處,壓力梯度較大,產生明顯回流。優化后壓力分布更為合理,優化效果較好?優化前后水泵的汽蝕性能通過下列公式進行預測
式中NPSHre為必需汽蝕余量,m;Pmin為葉片背面的最小壓強值,Pa;P0為進水流道進口總壓,Pa;ρ為水的密度,kg/m3;g為重力加速度,m/s2?
葉片背面最小壓強的參考壓力點,從輪轂開始取出葉展方向85%的翼型斷面,并距葉片進口10%~20%左右葉片寬度吸力面最小壓強值計算必需汽蝕余量?設計工況下優化前后該區域最小壓力值分別為45 757.2?39 870.3 Pa。根據式(5)計算得到優化前后必需汽蝕余量分別為5.7?6.26m。必需汽蝕余量有所增加,但是增加幅度不大,能夠滿足工程應用要求?
5 結論
1)提出了一套完整的基于數值分析和數值優化技術的軸流泵段多工況優化設計的方法?
2)采用CFD計算的學科分析方式,結合試驗研究的手段取代人工憑經驗的優化方式,提高了優化結果的可信度,同時也證實了軸流泵段多工況優化設計的可靠性?高效性?
3)軸流泵段在0.8倍的設計工況點效率提高約2.6%,設計工況點效率提高約0.5%,1.2倍設計工況點效率提高最多,約7.4%。而對于揚程變化范圍較小,各工況點揚程均能滿足運行要求,大大降低了運行成本,縮短了優化設計的周期?優化后軸流泵段高效區明顯變寬,大大的降低了泵站運行成本,同時汽蝕性能變化不大,優化效果十分明顯?
參考文獻
`1`李世煌.葉片泵的非設計工況及其優化設計`M`.北京:機械工業出版社,2005.
`2`楊敬江.軸流泵水力模型設計方法與數值模擬研究`D`.鎮江:江蘇大學,2008.
Yang Jingjiang. Studies on Hydraulic Design Method and Numerical Simulation of Axial Flow Pump Model`D`. Zhenjiang: Jiangsu University, 2008. (in Chinese with English abstract)
`3`楊帆.低揚程泵裝置水動力特性及多目標優化關鍵技術研究`D`. 揚州:揚州大學,2013.
Yang Fan. Research on Hydraulic Performance and Multi-objective Optimization Design of Low-lift Pump system`D`. Yangzhou: Yangzhou University, 2013. (in Chinese with English Abstract)
`4`徐磊.斜式軸伸泵裝置水力特性及優化設計研究`D`. 揚州:揚州大學,2009.
Xu Lei. Study on Hydraulic Characteristic and Optimum Design of Pump System with Slanting and Extensive Shaft`D`. Yangzhou: Yangzhou University, 2009. (in Chinese with English abstract)
`5`湯方平,王國強,劉超,等.高比轉數軸流泵水力模型設計與紊流數值分析`J`. 機械工程學報,2005,41(1):119-123.
Tang Fangping, Wang Guoqiang, Liu Chao, et al. Design and numerical analysis on an axial-flow model pump with high specific speed`J`. Chinese Journal of Mechanical Engineering, 2005, 41(1): 119-123. (in Chinese with English abstract)
`6`石麗建,湯方平,謝榮盛,等.基于CFD計算的軸流泵改型設計和效果`J`.農業工程學報,2015,31(4):97-102.
Shi Lijian, Tang Fangping, Xie Rongsheng, et al. Design of axial flow pump modification and its effect based on CFD calculation`J`. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 97-102. (in Chinese with English abstract)
`7`左曙光,韋開君,吳旭東,等.采用Kriging模型的離心壓縮機葉輪多目標參數優化`J`. 農業工程學報,2016,32(2):77-83.
Zuo Shuguang, Wei Kaijun, Wu Xudong, et al. Multi- objective parameter optimization of centrifugal compressor impeller with Kriging model`J`. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 77-83. (in Chinese with English abstract)
`8`Huang Renfang, Luo Xianwu, Ji Bin, et al. Multi-objective optimization of a mixed-flow pump impeller using modified 農業工程學報2016年68 NSGA-II algorithm`J`. Science China: Technological Science, 2015, 58(12): 2122-2130.
`9`王春林,葉劍,曾成,等.基于NSGA-Ⅱ遺傳算法高比轉速混流泵多目標優化設計`J`. 農業工程學報,2015,31(18):100-106.
Wang Chunlin, Ye Jian, Zeng Cheng, et al. Multi-objective optimum design of high specific speed mixed-flow pump based on NSGA-Ⅱgenetic algorithm`J`. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(18): 100 - 106. (in Chinese with English abstract)
`10`王凱,劉厚林,袁壽其,等.離心泵多工況水力性能優化設計方法`J`.排灌機械工程學報,2012,30(1):20-24.
Wang Kai, Liu Houlin, Yuan Shouqi, et al. Optimization method for hydraulic performance of centrifugal pump at multi-operation points`J`. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(1): 20-24. (in Chinese with English abstract)
`11` 袁壽其,胡博,陸偉剛,等. 中比轉數離心泵多工況設計`J`. 排灌機械工程學報,2012,30(5):497-502.
Yuan Shouqi, Hu Bo, Lu Weigang, et al. Multi-operating- condition design of centrifugal pump with medium specific speed`J`. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(5): 497 - 502. (in Chinese with English abstract)
`12` 舒信偉. 基于 CFD 流場分析的多工況多約束條件的葉片優化設計方法與實驗研究`D`. 上海:上海交通大學,2009.
Shu Xinwei. CFD-based Multi-point and Multi-constraint Blade Optimization Approach and Experimental Investigation`D`. Shanghai: Shanghai Jiao Tong University, 2009. (in Chinese with English abstract)
`13`王瓏,王同光,羅源. 改進的 NSGA-Ⅱ算法研究風力機葉片多目標優化`J`. 應用數學與力學,2011,32(6):693-701.
Wang Long, Wang Tongguang, Luo Yuan. Improved NSGA-Ⅱ in multi-objective optimization studies of wind turbine blades`J`. Applied Mathematics and Mechanics, 2011, 32(6): 693-701. (in Chinese with English abstract)
`14`郭鵬程,朱國俊,李昀哲,等. 水輪機尾水管肘管的多工況優化設計`J`. 水動力學研究與進展,2013,28(6):761-767.
Guo Pengcheng, Zhu Guojun, Li Yunzhe, et al. Multi-point optimization design of draft tube elbow`J`. Chinese Journal of Hydrodynamics, 2013, 28(6): 761-767. (in Chinese with English abstract)
`15` 湯方平,劉超,成立,等. 低揚程水泵選型新方法`J`. 水力水電科技進展,2001,21(4):41-43,70.
Tang Fangping, Liu Chao, Chen Li, et al. A new method for low-lift water pump selection`J`. Advances in Science and Technology Water Resources, 2001, 21(4): 41-43, 70. (in Chinese with English abstract)
`16`雷翠翠.水泵葉片的多學科設計優化理論與方法研究`D`. 揚州:揚州大學,2009. Lei Cuicui. Multidisciplinary Design Optimization Theory and Method Study of Water Pump Blades`D`. Yangzhou: Yangzhou University, 2009. (in Chinese with English abstract)
`17`湯方平,周濟人.低揚程泵裝置性能的決定因素`J`. 排灌機械,1997,15(1):12-13,27.
Tang Fangping, ZhouJiren. Determination of the pumping installation characteristic`J`. Drainage and Irrigation Machinery, 1997, 15(1): 12 - 13, 27. (in Chinese with English abstract)
`18` 王玲花. 葉柵稠密度對雙向貫流泵性能影響的分析`J`. 水電能源科學,2003,21(4):69-71.
Wang Linghua. Analysis of influence of blading density degree to characteristics of bidrectional tubulous pump`J`. Water Resources and Power, 2003, 21(4): 69 - 71. (in Chinese with English abstract)
`19`周濟人,湯方平,石麗建,等. 基于 CFD 的軸流泵針對性設計與試驗`J`. 農業機械學報,2015,46(8):42-47.
Zhou Jiren, Tang Fangping, Shi Lijian, et al. Specific design and experiment of axial-flow pump based on CFD`J`. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(8): 42-47. (in Chinese with English abstract)
`20` 樊江,曾維維,王榮橋,等. 基于 i SIGHT 的渦輪葉片葉冠優化設計`J`. 航空動力學報,2011,26(4):745-751.
Fan Jiang, Zeng Weiwei, Wang Rongqiao, et al. Optimization design of the turbine blade shroud based on i SIGHT software`J`. Journal of Aerospace Power, 2011, 26(4): 745-751. (in Chinese with English abstract)
`21` Ye Liang, Liu Zhongmin. Design of implantable axial-flow blood pump and numerical studies on its pereormance`J`. Journal of Hydrodynamics, 2009, 21(4): 445-452.
`22`周達達,陳國金,龔友平. 基于 i SIGHT 的多學科優化方法研究`J`. 機電工程,2009,26(12):78-81. Zhou Dada, Chen Guojin, Gong Youping . Research of multidisciplinary optimization based on i SIGHT`J`. Mechanical & Electrical Engineering Magazine, 2009, 26(12): 78-81. (in Chinese with English abstract)
`23`胡文婕,陳亮. 基于 iSIGHT 的汽車盤式制動器多學科設計優化`J`. 農業機械報,2010,41(5):17-20.
Hu Wenjie, Chen Liang. Multidisciplinary design optimization f or automobile disk brake based on i SIGHT`J`. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(5): 17-20. (in Chinese with English abstract)
`24`武樺,馮建軍,吳廣寬,等. 基于 CFD 的貫流式水輪機葉片改型及性能研究`J`. 西安理工大學學報,2013,29(3):290-294.
Wu Hua, Feng Jianjun, Wu Guangkuan, et al. The blade geometry modification and performance research for bulb turbin based on CFD`J`. Journal of Xi'an University of Technology, 2013, 29(3): 290-294.
`25`關醒凡.軸流泵和斜流泵水力模型設計試驗及工程應用`M`. 北京:中國宇航出版社,2009.
基金項目:國家自然科學基金項目(51376155);十二五農村領域科技計劃項目(2012BAD08B03-2);江蘇高校優勢學科建設工程資助項目(PAPD);江蘇省科研創新計劃項目(KYLX15_1365)
作者簡介:石麗建,男,江蘇如皋人,博十生。主要研究方向為流體功能曲INI的多學科優化設計。揚州揚州大學水利與能源動力工程學院,2251000。Email:yzdxslj@126.com
通信作者:湯方平,男,浙江金華人,博十生導師,教授,研究方向為流體機械設計、復雜工程系統科學優化設計、泵站自動化等。揚州 揚州大學水利與能源動力工程學院,2251000。Email:tanefp@vzu.edu.cn
(轉載請注明出處)